Komparasi Algoritma Machine Learning untuk Klasifikasi Gejala Coronavirus Disease 19 (Covid-19)
DOI:
https://doi.org/10.31294/coscience.v3i2.1984Keywords:
Corona Virus Desiase19, Klasifikasi, Decision Tree, dan SVMAbstract
COVID-19 or Corona Virus Disease 19 is a member of the extended family of coronaviruses that cause a spectrum of illnesses from mild to severe, including MERS and SARS. While the cause of COVID-19 transmission has not been confirmed, it is believed that the virus is transmitted from animals to humans, causing various symptoms such as cough, runny nose, fever, sore throat and loss of smell. Research was conducted to classify COVID-19 symptoms into low, medium, and high categories in patients. This study aims to classify patient data and determine the risk of COVID-19 infection based on the severity of symptoms, namely mild, moderate, and high. Machine learning methods, including Decision Tree and SVM algorithms, are introduced and compared with K-Nearest Neighbor (K-NN), Neural Network (NN), Random Forest (RF), and Naive Bayes. The dataset used contains 127 patient records from kaggle.com. The test results showed that SVM achieved 54% accuracy, while Decision Tree achieved 98%. This research provides important insights into the risk assessment of COVID-19 infection based on symptom severity, and the use of machine learning techniques is expected to improve analysis and prediction capabilities in the face of the COVID-19 pandemic.
References
L. PH, R. H. Suwoso, T. Febrianto, D. Kushindarto, and F. Aziz, “Dampak Pandemi Covid-19 bagi Perekonomian Masyarakat Desa,” Indones. J. Nurs. Heal. Sci., vol. 1, no. 1, pp. 37–48, 2020, doi: 10.37287/ijnhs.v1i1.225.
F. R. Sari, Ayu Riana et al., “Perilaku Pencegahan Covid-19 Ditinjau dari Karakteristik Individu dan Sikap Masyarakat,” J. Penelit. dan Pengemb. Kesehat. Masy. Indones., vol. 1, no. 128, pp. 32–37, 2020.
R. M. A. Satria, R. V. Tutupoho, and D. Chalidyanto, “Analisis Faktor Risiko Kematian dengan Penyakit Komorbid Covid-19,” J. Keperawatan Silampari, vol. 4, no. 1, pp. 48–55, 2020, doi: 10.31539/jks.v4i1.1587.
R. Abudi, Y. Mokodompis, and A. N. Magulili, “Stigma Terhadap Orang Positif Covid-19,” Jambura J. Heal. Sci. Res., vol. 2, no. 2, pp. 77–84, 2020, doi: 10.35971/jjhsr.v2i2.6012.
omega, “675-Article Text-2326-1-10-20220301,” vol. 5, no. 1, pp. 1–6, 2022.
T. H. Siagian, “Corona Dengan Discourse Network Analysis,” J. Kebijak. Kesehat. Indones., vol. 09, no. 02, pp. 98–106, 2020.
R. D. Buana, “Analisis Perilaku Masyarakat Indonesia dalam Menghadapi Pandemi Covid-19 dan Kiat Menjaga Kesejahteraan Jiwa,” Sos. dan Budaya, Fak. Syariah dan Huk. Univ. Islam Negeri Syarif Hidayatullah Jakarta, vol. 53, no. 9, pp. 1689–1699, 2017, [Online]. Available: file:///C:/Users/User/Downloads/fvm939e.pdf
S. Anggraini, M. Akbar, A. Wijaya, H. Syaputra, and M. Sobri, “Klasifikasi Gejala Penyakit Coronavirus Disease 19 (COVID-19) Menggunakan Machine Learning,” J. Softw. Eng. Ampera, vol. 2, no. 1, pp. 57–68, 2021, doi: 10.51519/journalsea.v2i1.105.
I. Metode, S. Vector, M. Svm, P. Citra, A. A. Pertiwi, and A. N. Utomo, “Jurnal Rekayasa Informasi , Vol . 12 No . 1 April 2023 FUNDUS RETINA MATA UNTUK DETEKSI PENYAKIT GLAUKOMA IMPLEMENTATION OF SUPPORT VECTOR MACHINE ( SVM ) METHOD ON FUNDUS IMAGE OF RETINA OF THE EYE FOR THE DETECTION OF GLAUCOMA,” vol. 12, no. 1, pp. 19–27, 2023.
A. Qalam, J. I. Keagamaan, V. Bioimaging, K. Kunci, and M. Learning, “VISUALISASI BIOIMAGING DENGAN MENGGUNAKAN MACHINE Fadhriz Qadrul Amien Faculty of Engineering Universitas Indonesia Basari Faculty of Engineering Universitas Indonesia Abstrak,” vol. 17, no. 1, pp. 98–111, 2023.
M. Napiah, R. A. Purnama, M. Raharjo, and W. Bismi, “Komparasi Algoritma Untuk Klasifikasi Penyakit Ispa (Infeksi Saluran Pernapasan Akut),” J. Infortech, vol. 4, no. 2, pp. 105–110, 2022, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/infortech/article/view/13644/5720
F. Y. Pamuji and V. P. Ramadhan, “Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy,” J. Teknol. dan Manaj. Inform., vol. 7, no. 1, pp. 46–50, 2021, doi: 10.26905/jtmi.v7i1.5982.
I. Sutoyo, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 217, 2018, doi: 10.33480/pilar.v14i2.926.
E. Suryati, A. Ari Aldino, N. Penulis Korespondensi, and E. Suryati Submitted, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” vol. 4, no. 1, pp. 96–106, 2023, [Online]. Available: https://doi.org/10.33365/jtsi.v4i1.2445
N. Neneng, K. Adi, and R. Isnanto, “Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM),” J. Sist. Inf. Bisnis, vol. 6, no. 1, p. 1, 2016, doi: 10.21456/vol6iss1pp1-10.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Musriatun Napiah, Rachmawati Darma Astuti, Eka Kusuma Pratama
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.