a Credit Eligibility Prediction for Electronic and Furniture Products Using Naive Bayes Method

Authors

  • Muhammad M. K. Putra Universitas Bina Sarana Informatika
  • Nurul Anisa Putri
  • Anton Bayu Nugraha
  • Dena Hasby

Keywords:

electronics and furniture, credit eligibility prediction, naive bayes, credit risk

Abstract

Consumer product purchases often rely on credit as a solution to finance the acquisition, including for electronic and furniture products. It's not just consumers involved in credit use; manufacturers and distributors of electronic and furniture products also depend on credit facilities to support sales. Predicting credit eligibility directly impacts credit providers' decisions in assessing whether a consumer qualifies for credit to purchase those products or not. Through accurate credit eligibility assessments, credit providers can mitigate credit risks associated with extending credit to consumers who may have lower repayment capabilities. Naive bayes, as an analytical method, offers ease of implementation, effectiveness in managing categorical data, the ability to compare probabilities, good accuracy, easily interpretable results, and the capability to handle categorical variables with numerous values. The utilization of naive bayes classification methods in predicting loan eligibility for customers in this study resulted in data accuracy metrics of 90%, recall of 80%, and precision of 100%. Additionally, the AUC value produced is 1.000.

References

R. B. Trianto, A. Triyono, and D. M. P. Arum, “Klasifikasi Rating Otomatis pada Dokumen Teks Ulasan Produk Elektronik Menggunakan Metode N-gram dan Naïve Bayes,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 3, p. 295, 2020.

A. Izza and D. Retnowati, “Analisis Kualitas Produk Furniture Dengan Pendekatan Metode Six Sigma,” Jurnal Heuristic, pp. 59–72, 2021.

R. P. Juliansyah and R. Rachman, “Tinjauan Prosedur Pemberian Pinjaman Dana Pada PT. FIF Group Cabang Bogor 3 Kabupaten Bogor,” Jurnal Aplikasi Bisnis Kesatuan, vol. 2, no. 1, pp. 19–30, 2022.

N. N. Padang, “Faktor-faktor yang Mempengaruhi Tingkat Pemberian Suku Bunga Kepada Nasabah dan Debitur pada PT. Bank X di Medan,” Jurnal Riset Akuntansi & Keuangan, pp. 110–118, 2022.

N. Putri, “Analisis Audit Sistem Pembelian Kredit pada Toko Elektronik,” Jurnal Ekonomi dan Bisnis, vol. 15, no. 2, pp. 32–39, 2023.

T. T. Muryono and I. Irwansyah, “Implementasi Data Mining Untuk Menentukan Kelayakan Pemberian Kredit Dengan Menggunakan Algoritma K-Nearest Neighbors (K-Nn),” Infotech: Journal of Technology Information, vol. 6, no. 1, pp. 43–48, 2020.

S. Nurdin, “Penerapan Prinsip 5C Upaya Memperkecil Resiko Kredit Macet terhadap Penyaluran Kredit pada PT Bankaltimtara Unit Samarinda,” Jurnal EKSIS, vol. 19, no. 01, pp. 44–56, 2023.

D. David, “Analisis Kelayakan Menerima Pinjaman Kredit Dengan Algoritma C4.5 Pada PT BPR Buana Arta Mulia,” UPB Repository, Jan. 2022, Accessed: Nov. 10, 2023. [Online]. Available: http://repository.upbatam.ac.id/1480/

A. Setianingrum, A. Hindayanti, D. M. Cahya, and D. S. Purnia, “Perbandingan Metode Algoritma K-NN & Metode Algoritma C45 Pada Analisa Kredit Macet (Studi Kasus PT Tungmung Textil Bintan),” EVOLUSI: Jurnal Sains Dan Manajemen, vol. 9, no. 2, 2021.

D. Librado and A. H. Nasyuha, “Penerapan Data Mining Untuk Klasifikasi Penerima Kredit Dengan Perbandingan Algoritma Naïve Bayes dan Algoritma C4. 5,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, pp. 1952–1961, 2023.

M. K. Tamami and I. Kharisudin, “Komparasi Metode Support Vector Machine dan Naive Bayes Classifier untuk Pemodelan Kualitas Pengajuan Kredit,” Indonesian Journal of Mathematics and Natural Sciences, vol. 46, no. 1, pp. 38–44, 2023.

I. Nurjanah, J. Karaman, I. Widaningrum, D. Mustikasari, and S. Sucipto, “Penggunaan Algoritma Naïve Bayes Untuk Menentukan Pemberian Kredit Pada Koperasi Desa,” Explorer (Hayward), vol. 3, no. 2, pp. 77–87, 2023.

R. Yesputra and A. Sapta, “Prediksi Kelancaran Pembayaran Angsuran Pada Koperasi Dengan Metode Naive Bayes Classifier,” Indonesian Journal of Computer Science, vol. 11, no. 2, 2022.

W. Habibulloh and S. Topiq, “Klasifikasi Kelayakan Kredit Menggunakan Algoritma Naive Bayes Pada Ksp Mekar Jaya Maleber,” Jurnal Responsif: Riset Sains dan Informatika, vol. 3, no. 1, pp. 92–99, 2021.

A. Tahta, I. Karim, and S. Sudianto, “Dominant Requirements for Student Graduation in the Faculty of Informatics using the C4.5 Algorithm,” Journal of Dinda Data Science, Information Technology, and Data Analytics, vol. 3, no. 2, pp. 50–58, 2023, [Online]. Available: http://journal.ittelkom-pwt.ac.id/index.php/dinda

F. F. Addini and D. Haryanto, “Pelatihan Microsoft Excel Untuk Remaja Di Desa Segara Makmur,” Jurnal Pengabdian Masyarakat Multidisiplin, vol. 6, no. 3, pp. 307–314, Jul. 2023, doi: 10.36341/jpm.v6i3.3310.

M. R. Nahjan, N. Heryana, and A. Voutama, “Implementasi Rapidminer Dengan Metode Clustering K-Means Untuk Analisa Penjualan Pada Toko Oj Cell,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 101–104, 2023.

H. H. Sucinta and T. Setiadi, “Penerapan Algoritma Holt-Winters Exponential Smoothing Untuk Estimasi Dan Naïve Bayes Untuk Klasifikasi Produksi Kelapa Sawit,” Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 4, no. 4, pp. 1158–1170, 2023.

E. E. Pramana and A. Saifudin, “Implementasi Data Mining Untuk Diagnosa Prediksi Penyakit Tuberculosis Dengan Menggunakan Algoritma Naïve Bayes,” BINER: Jurnal Ilmu Komputer, Teknik dan Multimedia, vol. 1, no. 3, pp. 745–759, 2023.

Published

2023-12-29

How to Cite

Putra, M. M. K., Putri, N. A. ., Nugraha , A. B. ., & Hasby , D. . (2023). a Credit Eligibility Prediction for Electronic and Furniture Products Using Naive Bayes Method. Jurnal Ladang Artikel Ilmu Komputer, 3(2), 50 - 56. Retrieved from http://eprints.bsi.ac.id/index.php/larik/article/view/3031

Issue

Section

Articles