Application of Naïve Bayes for Classification of Criteria for Potable Water with the CRISP-DM Method

Authors

  • Ibnu Alfitra Salam Universitas Singaperbangsa Karawang
  • Katon Wahyudi Putra Universitas Singaperbangsa Karawang
  • Sisca Yuliatina Universitas Singaperbangsa Karawang
  • Betha Nurina Sari Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.31294/p.v25i1.1754

Keywords:

Water Quality, Naïve Bayes, CRISP-DM, Rapidminer, Google Collab

Abstract

With water, living things can do various things easily. The adequacy of water is also important in maintaining human health. Water can be said to be feasible if its content is in accordance with the feasible criteria. From the dataset obtained regarding the feasibility of water for this study, it will calculate the accuracy value obtained using the Naive Bayes algorithm. To simplify the process of processing research data this time using the CRISP-DM methodology which is a stage for data mining. The study uses two tools, namely Rapidminer and Google Collab to compare their accuracy values. By using the two tools in implementing the Naive Bayes algorithm on a potable water quality dataset, an accuracy of 62.8% is obtained. This value is accurate enough to predict the quality of drinking water.

Author Biographies

Ibnu Alfitra Salam, Universitas Singaperbangsa Karawang

 

 

Katon Wahyudi Putra, Universitas Singaperbangsa Karawang

 

 

Sisca Yuliatina, Universitas Singaperbangsa Karawang

 

 

Betha Nurina Sari, Universitas Singaperbangsa Karawang

 

 

References

Alfiah, N. (2021). Klasifikasi Penerima Bantuan Sosial Program Keluarga Harapan Menggunakan Metode Naive Bayes. Jurnal Teknologi Informasi, 16(1), 32–40. https://doi.org/10.35842/jtir.v16i1.386

European Union. (2017). Sustainable Development Goals. Retrieved from https://www.sdg2030indonesia.org

Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200

Irnawan, F. D., Hidayah, I., & Nugroho, L. E. (2021). Metode Imputasi pada Data Debit Daerah Aliran Sungai Opak, Provinsi DI Yogyakarta. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(4), 301–310. https://doi.org/10.22146/jnteti.v10i4.2430

Khakim, E. N. R. (2022). Perbandingan Algoritma Klasifikasi Data Kesejahteraan Sosial Kabupaten Bantul. Jurnal Ilmiah Sistem Informasi, Teknologi Informasi Dan Sistem Komputer, 17(2), 91–100.

Nurlia, E., Jajuli, M., & Purnamasari, I. (2021). Penerapan Naïve Bayes Untuk Klasifikasi Tingkat Risiko Diagnosis Gigi Di Uptd Puskesmas Cingambul. JIKO (Jurnal Informatika Dan Komputer), 4(2), 127–132. https://doi.org/10.33387/jiko.v4i2.3190

Primajaya, A., Sari, B. N., & Khusaeri, A. (2020). Prediksi Potensi Kebakaran Hutan dengan Algoritma Klasifikasi C4.5 Studi Kasus Provinsi Kalimantan Barat. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(2), 188–192. https://doi.org/10.26418/jp.v6i2.37834

Saputra, P. S., Dantes, G. R., & Gunadi, I. G. A. (2021). Perbandingan Algoritma Fuzzy C-Means Dan Algoritma Naive Bayes Dalam Menentukan Keluarga Penerima Manfaat (Kpm) Berdasarkan Status Sosial Ekonomi (Sse) Terendah. JST (Jurnal Sains Dan Teknologi), 10(1), 1–8. https://doi.org/10.23887/jstundiksha.v10i1.23340

Saragi, N. R., Sembiring, A., & Nurhayati. (2022). Sistem Pakar Mendiagnosa Kelayakan Air Minum untuk Dikonsumsi menggunakan Metode Certainty Factor pada PDAM Tirta Sari Kota Binjai. Jurnal Citra Sains Teknologi, 2(1), 23–26.

Sari, Y. S. (2021). Penerapan Metode Naïve Bayes Untuk Mengetahui Kualitas Air Di Jakarta. Jurnal Ilmiah FIFO, 13(2), 222–228. https://doi.org/10.22441/fifo.2021.v13i2.010

Tempola, F., Muhammad, M., & Khairan, A. (2018). Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(5), 577–584. https://doi.org/10.25126/jtiik.201855983

Downloads

Published

2023-03-16

How to Cite

Salam, I. A., Putra, K. W., Yuliatina, S., & Sari, B. N. (2023). Application of Naïve Bayes for Classification of Criteria for Potable Water with the CRISP-DM Method. Paradigma - Jurnal Komputer Dan Informatika, 25(1). https://doi.org/10.31294/p.v25i1.1754