Optimization of the YOLOv7 Object Detection Algorithm for Estimating the Amount of Apple Harvest

Authors

  • Verry Riyanto Universitas Bina Sarana Informatika
  • Imam Nawawi Universitas Bina Sarana Informatika
  • Ridwansyah Ridwansyah Universitas Nusa Mandiri
  • Ganda Wijaya Universitas Nusa Mandiri
  • Toto Haryanto Institute Pertanian Bogor

DOI:

https://doi.org/10.31294/p.v25i1.1809

Keywords:

Harvest, Apple, Yolo, Image Processing

Abstract

The increasing population consumed in high production and food needs for survival. Apples are one of the crop harvest products in Indonesia whose needs are increasing, because they are not only needed for human vitamins but can be used as hand fruit or a form of gratitude to those who receive the fruit. In the process of harvesting apples in agricultural land, harvesting is often found which is not feasible in the hands of consumers because it takes too long for apples to not be harvested when the condition of the fruit is feasible in maturity. Therefore, the authors approach this problem by processing the image results obtained to form a detection model, whether the apples are said to be feasible to be harvested immediately and from the image results it can also be calculated the number of fruits captured by the image model , feature enhancements Estimates on objects from this image model are expected to provide more timely harvest predictions in order to provide longer aging of apples and good fruit quality after reaching consumers

Author Biographies

Verry Riyanto, Universitas Bina Sarana Informatika

 

 

Imam Nawawi, Universitas Bina Sarana Informatika

 

 

Ridwansyah Ridwansyah, Universitas Nusa Mandiri

 

 

Ganda Wijaya, Universitas Nusa Mandiri

 

 

Toto Haryanto, Institute Pertanian Bogor

 

 

References

Arifah, F. A., & Aprilia, I. R. (2019). Potensi Buah Apel (Malus domestica) Dalam Mengatasi Penyakit Asma. Proceeding of Biology Education, 3(1), 208–212.

BPS. (2021). Produksi Tanaman Buah-buahan 2021. https://www.bps.go.id/indicator/55/62/1/produksi-tanaman-buah-buahan.html

Dataset Kaggle. (2022). https://www.kaggle.com/docs/datasets

Dohitra, M., Hapsari, Y., & Estiasih, T. (2015). Variasi Proses dan Grade Apel (Malus sylvestris mill) Pada Pengolahan Minuman Sari Buah Apel: Kajian Pustaka. Jurnal Pangan Dan Agroindustri, 3(3), 939–949. http://jpa.ub.ac.id/index.php/jpa/article/viewFile/216/223

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779–788. https://doi.org/10.1109/CVPR.2016.91

Riad, M., Elgammal, A., & Elzanfaly, D. (2018). Efficient management of perishable inventory by utilizing IoT. 2018 IEEE International …. https://ieeexplore.ieee.org/abstract/document/8436267/

Roboflow. (2022). Build Better Computer Vision Models Faster. https://docs.roboflow.com/

Solawetz, J. (2022). YOLO Network Architecture. https://blog.roboflow.com/yolov7-breakdown

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7+appendix. 1–17. http://arxiv.org/abs/2207.02696

Wiyatini, T., Ekoningtyas, E. A., & Prasko, P. (2016). Efektiftas Mengunyah Buah Berserat Dan Berair Terhadap Kuantitas Bakteri Streptococcus Mutans Pada Anak Kebutuhan Khusus. Jurnal Kesehatan Gigi, 3(1), 7–12. https://doi.org/10.31983/jkg.v3i01.1118

Downloads

Published

2023-03-29

How to Cite

Riyanto, V., Nawawi, I., Ridwansyah, R., Wijaya, G., & Haryanto, T. (2023). Optimization of the YOLOv7 Object Detection Algorithm for Estimating the Amount of Apple Harvest. Paradigma - Jurnal Komputer Dan Informatika, 25(1). https://doi.org/10.31294/p.v25i1.1809