Prediction of Infant Mortality Using The Decision Tree and Genetic Algorithm Methods

Authors

  • Suhardjono Suhardjono Universitas Bina Sarana Informatika
  • Adjat Sudradjat Universitas Bina Sarana Informatika
  • Bilal Abdul Wahid Universitas Bina Sarana Informatika
  • Hari Sugiarto Universitas Bina Sarana Informatika
  • Hafis Nurdin Universitas Nusa Mandiri

DOI:

https://doi.org/10.31294/p.v25i1.1819

Keywords:

Decision Tree, Infant Mortality, Genetic Algorithm

Abstract

One of the things that plays a role in reducing infant mortality is the government. Based on infant mortality data in Jakarta in 2018 that has been previously tested with the decision tree algorithm, the update in this study is to use the genetic algorithm. The purpose of the update is to increase the accuracy of the results to be maximized. From the test results with the DT algorithm optimized by GA, the maximum accuracy value is 100%, and each attribute has a weight value of 1 where the value is the maximum value. After obtaining maximum results, the data will be used to reduce infant mortality, especially in Jakarta

Author Biographies

Suhardjono Suhardjono, Universitas Bina Sarana Informatika

 

 

 

Adjat Sudradjat, Universitas Bina Sarana Informatika

 

 

Bilal Abdul Wahid, Universitas Bina Sarana Informatika

 

 

Hari Sugiarto, Universitas Bina Sarana Informatika

 

 

Hafis Nurdin, Universitas Nusa Mandiri

 

 

References

Abirami, E., & Karthika, S. (2018). Design of infant monitoring system to reduce the risk of sudden infant death syndrome. Proceedings of the 2017 IEEE International Conference on Communication and Signal Processing, ICCSP 2017, 2018-Janua, 180–183. https://doi.org/10.1109/ICCSP.2017.8286802

Elhariri, E., El-Bendary, N., & Taie, S. A. (2020). Using Hybrid Filter-Wrapper Feature Selection with Multi-Objective Improved-Salp Optimization for Crack Severity Recognition. IEEE Access, 8, 84290–84315. https://doi.org/10.1109/ACCESS.2020.2991968

Hammami, M., Bechikh, S., Hung, C. C., & Ben Said, L. (2019). A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection. Memetic Computing, 11(2), 193–208. https://doi.org/10.1007/s12293-018-0269-2

Kohno, A., Techasrivichien, T., Pilar Suguimoto, S., Dahlui, M., Nik Farid, N. D., & Nakayama, T. (2020). Investigation of the key factors that influence the girls to enter into child marriage: A meta-synthesis of qualitative evidence. PLoS ONE, 15(7 July), 1–20. https://doi.org/10.1371/journal.pone.0235959

Mariati, U., Agus, Z., Sulin, D., Masrul, M., Amri, Z., Arasy, F., Muslim, M., Hanum, H., Mohanis, M., & Arma, F. (2011). Studi Kematian Ibu dan Kematian Bayi di Provinsi Sumatera Barat: Faktor Determinan dan Masalahnya. Kesmas: National Public Health Journal, 5(6), 243. https://doi.org/10.21109/kesmas.v5i6.119

Priyatama, I. M. D., & Satya, B. (2022). Klasifikasi Anak Berkebutuhan Khusus Tunagrahita. 24(1).

Purnama, J. J., Nawawi, H. M., Rosyida, S., Ridwansyah, & Risandar. (2020). Klasifikasi Mahasiswa Her Berbasis Algortima Svm Dan Decision Classification of Her Students Based on Svm Algorithm and. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1253–1260. https://doi.org/10.25126/jtiik.202073080

Ridwansyah, R., Riyanto, V., Hamid, A., Rahayu, S., & Purnama, J. J. (2022). Grouping Data in Predicting Infant Mortality Using K-Means and Decision Tree. Paradigma - Jurnal Komputer Dan Informatika, 24(2), 168–174. https://doi.org/10.31294/paradigma.v24i2.1399

Ridwansyah, R., Wijaya, G., & Purnama, J. J. (2020). Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students. Jurnal Pilar Nusa Mandiri, 16(1), 53–58. https://doi.org/10.33480/pilar.v16i1.1180

Riyanto, V., Hamid, A., & Ridwansyah. (2019). Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424

Salina, F. H., Almeida, I. A. de, & Bittencourt, F. R. (2019). Renewable Energy and Sustainable Buildings.

Setyo, D., Dan, R., Puspitasari, N., Biostatistika, D., Fakultas, K., Masyarakat, K., Airlangga, U., Mulyorejo Kampus, J., Surabaya, U., Korespondensi, A., Dwi, :, & Rini, S. (2014). Hubungan Status Kesehatan Neonatal Dengan Kematian Bayi. 60115.

Downloads

Published

2023-03-30

How to Cite

Suhardjono, S., Sudradjat, A., Wahid, B. A., Sugiarto, H., & Nurdin, H. (2023). Prediction of Infant Mortality Using The Decision Tree and Genetic Algorithm Methods. Paradigma - Jurnal Komputer Dan Informatika, 25(1). https://doi.org/10.31294/p.v25i1.1819