Classification of Dog Emotion Using Transfer Learning on Convolutional Neural Network Algorithm

Authors

  • Steven Tribethran Universitas Multi Data Palembang
  • Nicolas Jacky Pratama Hasan Universitas Multi Data Palembang
  • Abdul Rahman Universitas Multi Data Palembang

DOI:

https://doi.org/10.31294/p.v26i2.5295

Keywords:

Dog, Convolutional Neural Network, Emotion classification, Transfer Learning, VGG16

Abstract

Recognizing your pet's emotions are very important to improve health, welfare and to detect certain diseases in the animal. The emotions in question are categorized into four categories, namely anger, happiness, calmness, and sadness. The model is designed by utilizing transfer learning techniques using the VGG16 architecture to perform image feature extraction for dog emotion classification based on the image of the animal's facial expression. The research produced an accuracy value of 96.72% on the training set and 88.05% on the validation set, as well as an average F1-Score value of 84.30% on the test set. This research shows the great potential of utilizing transfer learning in dog emotions classification and contributes to more advanced emotion recognition techniques to improve pet’s welfare.

References

Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM Classifier for Handwritten Digit Recognition. Procedia Computer Science, 167, 2554–2560. https://doi.org/https://doi.org/10.1016/j.procs.2020.03.309

Ahmed, F., Bari, A. S. M. H., & Gavrilova, M. L. (2020). Emotion Recognition From Body Movement. IEEE Access, 8, 11761–11781. https://doi.org/10.1109/ACCESS.2019.2963113

Alswaidan, N., & Menai, M. E. B. (2020). A survey of state-of-the-art approaches for emotion recognition in text. Knowledge and Information Systems, 62(8), 2937–2987. https://doi.org/10.1007/s10115-020-01449-0

Amici, F., Waterman, J., Kellermann, C. M., Karimullah, K., & Bräuer, J. (2019). The ability to recognize dog emotions depends on the cultural milieu in which we grow up. Scientific Reports, 9(1), 16414. https://doi.org/10.1038/s41598-019-52938-4

Broomé, S., Feighelstein, M., Zamansky, A., Carreira Lencioni, G., Haubro Andersen, P., Pessanha, F., Mahmoud, M., Kjellström, H., & Salah, A. A. (2023). Going Deeper than Tracking: A Survey of Computer-Vision Based Recognition of Animal Pain and Emotions. International Journal of Computer Vision, 131(2), 572–590. https://doi.org/10.1007/s11263-022-01716-3

Burza, L. B., Bloom, T., Trindade, P. H. E., Friedman, H., & Otta, E. (2022). Reading emotions in Dogs’ eyes and Dogs’ faces. Behavioural Processes, 202, 104752. https://doi.org/https://doi.org/10.1016/j.beproc.2022.104752

Chen, H.-Y., Lin, C.-H., Lai, J.-W., & Chan, Y.-K. (2023). Convolutional Neural Network-Based Automated System for Dog Tracking and Emotion Recognition in Video Surveillance. Applied Sciences, 13(7). https://doi.org/10.3390/app13074596

Dzedzickis, A., Kaklauskas, A., & Bucinskas, V. (2020). Human emotion recognition: Review of sensors and methods. In Sensors (Switzerland) (Vol. 20, Issue 3). MDPI AG. https://doi.org/10.3390/s20030592

Ferguson, M., ak, R., Lee, Y.-T., & Law, K. (2017). Automatic localization of casting defects with convolutional neural networks. https://doi.org/10.1109/BigData.2017.8258115

Hansen, M. F., Baxter, E. M., Rutherford, K. M. D., Futro, A., Smith, M. L., & Smith, L. N. (2021). Towards facial expression recognition for on-farm welfare assessment in pigs. Agriculture (Switzerland), 11(9). https://doi.org/10.3390/agriculture11090847

Hantke, S., Cummins, N., & Schuller, B. (2018). What is my Dog Trying to Tell Me? the Automatic Recognition of the Context and Perceived Emotion of Dog Barks. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5134–5138. https://doi.org/10.1109/ICASSP.2018.8461757

Ko, B. C. (2018). A brief review of facial emotion recognition based on visual information. Sensors (Switzerland), 18(2). https://doi.org/10.3390/s18020401

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827

Licia Sbattella Co-Supervisor, prof, Roberto Tedesco, I., Cottone, F., & Tsegay Beyene Matr, S. (2018). Title: Emotion Recognition from Video Using Transfer Learning and Stacking.

Manzoor, A., Ahmad, W., Ehatisham-ul-Haq, M., Hannan, A., Asif Khan, M., Usman Ashraf, M., Alghamdi, A. M., & Alfakeeh, A. S. (2020). Inferring emotion tags from object images using convolutional neural network. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/APP10155333

Neethirajan, S., Reimert, I., & Kemp, B. (2021). Measuring farm animal emotions—sensor-based approaches. In Sensors (Switzerland) (Vol. 21, Issue 2, pp. 1–23). MDPI AG. https://doi.org/10.3390/s21020553

Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks.

Piana, S., Staglianò, A., Odone, F., & Camurri, A. (2016). Adaptive Body Gesture Representation for Automatic Emotion Recognition. ACM Trans. Interact. Intell. Syst., 6(1). https://doi.org/10.1145/2818740

Riyadi, A. S., Wardhani, I. P., Widayati, D. S., & Kunci, K. (2021). Klasifikasi Citra Anjing dan Kucing Menggunakan Metode Convolutional Neural Network (CNN). Universitas Gunadarma Jl. Margonda Raya No, 5(1), 12140.

Sabri, A. (2023). Transfer Learning Model CNN Pralatih Untuk Klasifikasi Bunga Iris Berbasis Citra. In Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK) (Vol. 7, Issue 1).

Sudianto, S. (2022). Analisis Kinerja Algoritma Machine Learning Untuk Klasifikasi Emosi. Building of Informatics, Technology and Science (BITS), 4(2). https://doi.org/10.47065/bits.v4i2.2261

Tammina, S. (2019a). Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), 9(10), p9420. https://doi.org/10.29322/ijsrp.9.10.2019.p9420

Tammina, S. (2019b). Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), 9(10), p9420. https://doi.org/10.29322/ijsrp.9.10.2019.p9420

Totakura, V., Hussan, M. I. T., Janmanchi, K., & Rajesh, D. (2020). Prediction Of Animal Vocal Emotions Using Convolutional Neural Network. Article in International Journal of Scientific & Technology Research, 9, 2. www.ijstr.org

Lee, D., Dong, Sui, Dong, Manbak, Koo, Manbak, Park, G., & Yak, Yo. (2022). Dongsu Lee et al.: Analysis of Transfer Learning Effect for Automatic Dog Breed Classification 133 (Dongsu Lee et al.: Analysis of Transfer Learning Effect for Automatic Dog Breed Classification) Analysis of Transfer Learning Effect for Automatic Dog Breed Classification Analysis of Transfer Learning Effect for Automatic Dog Breed Classification. 27(1). https://doi.org/10.5909/JBE.2022.27.1.133.

Downloads

Published

2024-09-30

How to Cite

Tribethran, S., Jacky Pratama Hasan, N., & Rahman, A. (2024). Classification of Dog Emotion Using Transfer Learning on Convolutional Neural Network Algorithm. Paradigma - Jurnal Komputer Dan Informatika, 26(2), 102-108. https://doi.org/10.31294/p.v26i2.5295