Perbandingan Algoritma Dengan Particle Swarm Optimization Untuk Analisis Sentimen Pada Peraturan PSBB di Indonesia

Authors

  • Mugi Raharjo Universitas Nusa Mandiri
  • Jordy Lasmana Putra Universitas Nusa Mandiri
  • Tommi Alfian Armawan Sandi Universitas Bina Sarana Informatika
  • Musriatun Napiah Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.31294/paradigma.v24i1.968

Keywords:

Text Mining, Sentiment, Algorithm

Abstract

The pandemic has given rise to new rules and terms in society. Various countries have their own regulations, including Indonesia with the name PSBB for that, the author tries to conduct research related to the PSBB condition in Indonesia with the intent and purpose of knowing people's sentiments towards it, the authors carry out this modeling positively and negatively. model in a tweet on Twitter. We capture information through Twitter media which then we process the data so that it is ready to be tested on the algorithm used. In data collection and processing, we use a fast miner application. In this study, Naive Bayes,KNN,and SVM were used. We also did a model comparison with Particle Swarm Optimization. model 1 tested three algorithms using a 0.7-0.8 ratio validation and 10-fold cross-validation, In Model 2 the author used a selection feature, namely Particle swarm Optimization where PSO was used as optimization. From the second model, the accuracy is 88.00%. for SVM + PSO, 88.54%% for NB + PSO and 81.58% for K -NN + PSO. And after testing the 2 methods, it turns out that Naive Bayes + PSO has the highest level of accuracy and precision

References

Aaputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry Maulana Husain. (2019). Sentiment Analysis Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 377–382. https://doi.org/10.29207/resti.v3i3.1118

Abdulloh, N., & Hidayatullah, A. F. (2019). Deteksi Cyberbullying pada Cuitan Media Sosial Twitter. Automata, Vol 1(1), 1–5.

Adhe, D., Rachman, C., Goejantoro, R., & Tisna, D. (2020). Implementation Of Text Mining For Grouping Thesis Documents Using K-Means Clustering. Jurnal EKSPONENSIAL, 11(2), 167–174.

Hadna, M. S., Santosa, P. I., & Winarno, W. W. (2016). Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter. Seminar Nasional Teknologi Informasi Dan Komunikasi, 2016(Sentika), 57–64. Retrieved from https://fti.uajy.ac.id/sentika/publikasi/makalah/2016/95.pdf

Hasan, F. N. (2018). Fuad Nur Hasan, Mochamad Wahyudi, 3(1), 430–439.

James V. Miranda, L. (2018). PySwarms: a research toolkit for Particle Swarm Optimization in Python. The Journal of Open Source Software, 3(21), 433. https://doi.org/10.21105/joss.00433

Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017). Volume 1 No 2 Desember 2017 p-ISSN 2088-3943 e-ISSN 2580-9741 PENERAPAN ALGORITMA NAIVE BAYES UNTUK MEMPREDIKSI JUMLAH PRODUKSI BARANG BERDASARKAN DATA PERSEDIAAN DAN JUMLAH PEMESANAN PADA CV. PAPADAN MAMA PASTRIES. Jurnal Mantik Penusa, 1(2), 16–21. Retrieved from https://ezp.lib.unimelb.edu.au/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=ffh&AN=2008-10-Aa4022&site=eds-live&scope=site

Mustafa, M. S., Ramadhan, M. R., & Thenata, A. P. (2018). Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Creative Information Technology Journal, 4(2), 151. https://doi.org/10.24076/citec.2017v4i2.106

Pastor, C. K. L. (2020). Sentiment analysis of Filipinos and effects of extreme community quarantine due to coronavirus (COVID-19) Pandemic. Journal of Critical Reviews, 7(7), 91–95. https://doi.org/10.31838/jcr.07.07.15

Sedighizadeh, D., Masehian, E., Sedighizadeh, M., & Akbaripour, H. (2021). GEPSO: A new generalized particle swarm optimization algorithm. Mathematics and Computers in Simulation, 179, 194–212. https://doi.org/10.1016/j.matcom.2020.08.013

Susanto, W. E., & Riana, D. (2016). Komparasi Algoritma. Jurnal Speed, 8(3), 18–27.

Taufik, A. (2018). Komparasi Algoritma Text Mining Untuk Klasifikasi Review Hotel. Jurnal Teknik Komputer AMIK BSI (JTK), IV(2), 69–74. https://doi.org/10.31294/jtk.v4i2.3461

Wardhani, N. K., Rezkiani, Kurniawan, S., Setiawan, H., Gata, G., Tohari, S., … Wahyudi, M. (2018). Sentiment analysis article news coordinator minister of maritime affairs using algorithm naive bayes and support vector machine with particle swarm optimization. Journal of Theoretical and Applied Information Technology, 96(24), 8365–8378.

Warjiyono, Aji, S., Fandhilah, Hidayatun, N., Faqih, H., & Liesnaningsih. (2019). The Sentiment Analysis of Fintech Users Using Support Vector Machine and Particle Swarm Optimization Method. 2019 7th International Conference on Cyber and IT Service Management, CITSM 2019. https://doi.org/10.1109/CITSM47753.2019.8965348

Widiastuti, D., Informasi, J. S., & Gunadarma, U. (2007). Analisa Perbandingan Algoritma Svm , Naive Bayes , Dan Decision Tree Dalam Mengklasifikasikan Serangan ( Attacks ), 1–8.

Xia, X., Gui, L., Yu, F., Wu, H., Wei, B., Zhang, Y. L., & Zhan, Z. H. (2020). Triple Archives Particle Swarm Optimization. IEEE Transactions on Cybernetics, 50(12), 4862–4875. https://doi.org/10.1109/TCYB.2019.2943928

Downloads

Published

2022-03-16

How to Cite

Raharjo, M., Putra, J. L., Sandi, T. A. A., & Napiah, M. (2022). Perbandingan Algoritma Dengan Particle Swarm Optimization Untuk Analisis Sentimen Pada Peraturan PSBB di Indonesia. Paradigma - Jurnal Komputer Dan Informatika, 24(1), 67-74. https://doi.org/10.31294/paradigma.v24i1.968